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Abstract

A sensitive, competitive enzyme-linked immunosorbent assay (ELISA) for the detection of the 

antimicrobial triclosan (TCS; 2,4,4’-trichloro-2’-hydroxydiphenyl ether) was developed. Novel 

immunizing haptens were synthesized by derivatizing at the 4-Cl position of the TCS molecule. 

Compounds derived from substitutions at 4’-Cl and that replaced the 2’–OH with a –Cl were 

designed as unique coating antigen haptens. Polyclonal rabbit antisera were screened against the 

coating antigen library in order to identify combinations of immunoreagents resulting in the most 

sensitive assays. The most sensitive assay identified was one utilizing antiserum #1155 and a 

heterologous competitive hapten where the 2’–OH group was substituted with a Cl. An IC50 value 

and the detection range for TCS in assay buffer were 1.19 and 0.21–6.71 μg/L, respectively. The 

assay was selective for TCS, providing low cross-reactivity (< 5%) to the major metabolites of 

TCS and to brominated diphenyl ether-47. A second assay utilizing a competitive hapten 

containing Br instead of Cl substitutions was broadly selective for both brominated and 

chlorinated diphenylethers. Using the most sensitive assay combination, TCS concentrations were 

measured in water samples following dilution. Biosolid samples were analyzed following dilution 

of a simple solvent extract. The immunoassay results were similar to those determined by LC-

MS/MS. This immunoassay can be used as a rapid and convenient tool to screen for human and 

environmental exposure.

INTRODUCTION

Triclosan (TCS; 2,4,4′-trichloro-2′-hydroxydiphenyl ether) is widely used as an 

antimicrobial agent in household and personal care products (Figure 1). The widespread use 

of TCS has resulted in its presence in wastewater effluents, biosolids, and in surface 

receiving waters.1-5 This results in direct exposure to aquatic animals, such as fish and 
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snails. The land application of biosolids presents concerns about the potential for reentry of 

TCS into the environment and therefore additional exposure pathways.6 Human and animal 

exposure to TCS is of great concern since it has been demonstrated to be an antagonist in 

both estrogen-mediated and androgen-mediated bioassays, a potent Ca2+ channel sensitizer 

and uncoupler in a ryanodine receptor-mediated bioassay and primary muscle cells, and 

increases susceptibility to liver carcinogenesis.7-10

Current analytical methods are based on LC-MS/MS or GC/ECD or GC/MS for the 

detection of TCS in wastewater and environmental samples. Analysis of water and biosolids 

typically includes sample preparation steps such as liquid-liquid and/or solid phase 

extraction, and for GC analysis, derivatization of the hydroxyl group.11-13 Although these 

methods are well-suited for their applications, for routine monitoring a simple, robust, rapid 

method that can analyze a large number of samples is desired. Immunoassay methods can 

serve as a rapid screen for environmental contaminants, pesticides, and their degradation 

products in environmental chemistry.14,15 These techniques are widely used in diagnostics, 

environmental monitoring, food quality, agriculture, and field or on-site testing of personnel 

exposed to toxic chemicals. We have demonstrated these routine immunoanalytical 

techniques using environmental and biological samples such as house dust, soil, water, urine, 

and blood.14,16,17

The objective of this study was to develop an enzyme linked immunosorbent assay (ELISA) 

for the analysis of TCS as a simple monitoring tool. Our approach was twofold. First, novel 

immunizing and competitive haptens were carefully designed and synthesized. For 

immunizing, the design focused on haptens that most closely mimicked the target analyte for 

development of selective antibodies. With competitive haptens, we designed haptens that 

should have relatively lower affinity compared to the target analyte in order to improve the 

sensitivity of the assay. Secondly we took advantage of the strengths of using the hapten-

protein-coated format. Advantages of this format include using rabbit antibody sparingly 

compared to the antibody-coated format that generally used 10 to 100 times more antibody 

reagent. Hapten, that can be costly to synthesize, is also used more sparingly in this format, 

because hapten-protein conjugates as coating antigens are generally more stable than hapten-

enzyme conjugates that require preservation of the enzymatic activity to be functional.

Immunoassays for TCS detection have been developed previously18,19. However, the 

formats in which these have been developed require a relatively large amount of primary 

antibody reagent because the solid support (e.g. magnetic beads or microtiter plate) is coated 

with primary antibody. Since polyclonal antibody reagents are typically only generated once 

from a single animal, their supply is limited, thus not permitting its use for analyzing large 

sample sets without the potential need to re-optimize another aliquot of reagent. An ELISA 

format where a labeled secondary antibody is used would permit more sparing use of 

primary antibody, while using a hapten-protein conjugate as the immobilized coating 

antigen, thereby extending the usefulness of the assay.

This study reports the preparation of novel haptens, characterization of newly generated 

antibodies, immunoassay optimization, and validation. This is the first report on the analysis 

of biosolids by immunoassay. Furthermore, the reagents generated may be further applied to 
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immunosensor-based assays and used in the generation of antibodies from new sources, such 

as camelid-derived VHH nanobodies, which are ongoing projects in this laboratory.

EXPERIMENTAL

Chemicals and Instruments

All hapten coupling reagents (sulfo-N-hydroxysuccinimide, N-hydroxysuccinimide, 1-

ethyl-3-(3-dimethylaminopropyl)carbodiimide, dicyclohexylcarbodiimide, isobutyl 

chloroformate, tri-n-butylamine), bovine serum albumin (BSA), thyroglobulin (Tg), goat 

anti-rabbit IgG peroxidase conjugate (GAR-HRP), Tween 20, and 3,3’,5,5’-

tetramethylbenzidine (TMB) were purchased from Sigma-Aldrich Chemical Co. (St. Louis, 

MO). ELISA was performed on 96-well microtiter plates (Nunc MaxiSorp, Roskilde, 

Denmark) and read spectrophotometrically with a microplate reader (Molecular Devices, 

Sunnyvale, CA) in dual wavelength mode (450 and 650 nm).

Hapten Synthesis

Due to their molecular size, TCS haptens require conjugation to carrier proteins in order to 

be immunogenic. Thus, TCS haptens containing a carboxylic group or an amino group were 

designed and synthesized (Figure 1). The –NH2 or –COOH linker was introduced at the 4-Cl 

(hapten T2) or 4’-Cl (hapten T3) position in the TCS molecule in order to keep the –OH 

group free and most distal to the point of attachment to the protein. To retain the – OH group 

it was protected during synthesis of the haptens then deprotected using boron tribromide. 

When coupled to the carrier protein, these haptens fully presented the majority of the TCS 

molecule for antibody recognition resulting in an antibody selective for TCS.

Hapten precursors described in the Supporting Information were initially synthesized with a 

nitroaromatic (4; SI Scheme 2) or aldehyde (7, SI Scheme 3) analog prepared from 

commercially available starting materials via nucleophilic aromatic substitution. Compound 

4 was hydrogenated to provide the aniline (5, SI Scheme 2), followed by boron tribromide-

mediated cleavage of the methyl ester to obtain the immunizing hapten T2 that was 

conjugated to protein by the diazotization method.

An unsaturated spacer was introduced into methylated dichlorophenoxybenzaldehyde (7) by 

enylation with phosphonoacetate or phosphonocrotonate using lithium hydroxide and 

molecular sieve by the Wittig or Horner-Wadsworth-Emmons reaction20 to synthesize the 

intermediates 8, 18 or20 (SI Scheme 3, 8 or 9, respectively). To produce hapten T3, the 

unsaturated spacer in intermediate 8 was converted to a saturated spacer (9) by using Pd/C 

under H2 atmosphere. Cleavage of the aryl ether (Ar-OCH3) and the ester by boron 

tribromide provided a strategy for the unmasking of both the ArOH and ArCO2H functional 

groups.21 For coating hapten T7, compound 8 was not converted to a saturated spacer. A 

similar strategy was used for coating haptens T8 and T9 (Figure 1) using compounds 18 and 

20 with unsaturated linkers. All four haptens were coupled to proteins using the N-

hydroxysuccinimide method22.

The haptens T1 and T5 described in the Supporting Information (Schemes 1 and 5) were 

alkylated to obtain different lengths of a single-bonded hydrocarbon linker at the 2’-OH 
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position of the TCS molecule. Ethyl bromobutyrate or ethyl bromohexanoate was used for 

the carbon linker attachment on the TCS structure. More detailed synthetic procedures are 

provided in the Supporting Information.

Preparation of Immunogen and Coating Antigens

For haptens containing a -COOH, conjugation to proteins was made using the N-

hydroxysuccinimide (NHS)22, sulfo-NHS carbodiimide22, or mixed anhydride method.23 

Haptens containing an -NH2 were conjugated by a diazotization method.22 Haptens T1, T2 
and T3 (Figure 1) conjugated to Tg were used as immunogens. Haptens T1-T9 were 

conjugated to bovine serum albumin (BSA) for use as coating antigens. Further hapten-

protein conjugation details can be found in Supporting Information.

Immunization and Antiserum Preparation

The immunization was performed according to the procedure reported previously.24 For 

each immunogen, three female New Zealand white rabbits were immunized (Rabbits 

1288/1289/1290 against hapten T1-Tg, Rabbits 1154/1155/1156 against hapten T2-Tg, and 

Rabbits 1157/1158/1159 against hapten T3-Tg). After seven boosts, a final serum was 

collected about 5 months following the first immunization. Antiserum was obtained by 

centrifugation, stored at −20 °C and used without purification.

Immunoassay

The ELISA was performed according to the procedure described previously.24 In this 

format, the hapten-protein conjugate is coated to the well of the microtiter plate. After 

incubation with analyte and primary antibody, unbound primary antibody is washed away. 

The remaining primary antibody is detected using a secondary antibody that is conjugated to 

an enzyme. The IC50 value, an expression of the sensitivity of the immunoassay, and the 

limit of detection (LOD), defined as the IC10 value, were obtained from a four parameter 

logistic equation. Borosilicate glass tubes were used to prepare standard and sample 

solutions.

Cross Reactivity

The cross reactivity studies were evaluated using compounds that are structurally similar to 

TCS (Table 3). The cross reactivity was calculated as the (IC50 of the target analyte/IC50 of 

the tested compound) × 100.

Preparation of Water Samples

Water samples used for TCS analysis were taken from a fish exposure study representative 

of USEPA standard exposure procedures.25 Water samples used in the fish exposure study 

were prepared using a single batch of deionized water adjusted to USEPA moderately hard 

standards (pH 7.4-7.8; hardness 80-100 mg/L; alkalinity 57-64 mg/L).26 Aliquots of the 

adjusted water were added to beakers then spiked with 100 μL of concentrated stock 

solutions of TCS in methanol to obtain the TCS concentration listed in Table 4 with a final 

concentration of 0.01% methanol. Aliquots from each beaker were taken for analysis prior to 

the addition of fish. For analysis, water samples were diluted 5-25 times with 10% methanol 
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in phosphate buffered saline (PBS) buffer in order to bring the absorbance values within the 

linear range for immunoassay. For LC-MS/MS analysis, water samples were extracted in 

triplicate by solid phase extraction (SPE) as detailed in Supporting Information.

Analysis of Biosolid Samples

Biosolid samples were collected from a regional wastewater treatment plant that processes 

about 140 million gallons of wastewater daily. At the time of sample collection, this facility 

diverted about 20% of the total sewage sludge to the production of biosolids for use as 

fertilizer while the remainder was disposed into unlined dedicated land disposal areas. 

Samples were obtained from the dedicated land disposal area and were not further 

characterized. The samples were prepared according to the method of Ogunyoku and 

Young.27 Briefly, samples were dried at 70 °C for 24 h and homogenized with a mortar and 

pestle. For analysis by immunoassay, fifteen mL of a mixture of methanol and acetone (1:1, 

v/v) were added to 1 g of dried sample. The mixture was shaken for 24 h at 210 rpm at 

60 °C and centrifuged for 30 min at 4,000 rpm. The extract was further diluted 375 - 3,000 

times with a 10% methanol in PBS buffer prior to the immunoassay. For LC-MS/MS 

analysis the dried biosolid samples (1.0 g) were extracted with methanol using a reflux 

apparatus. The extract was purified by SPE prior to using the LC-MS/MS analysis method 

of Ogunyoku and Young.27 (see Supporting Information for details).

RESULTS AND DISCUSSION

Hapten Synthesis

Novel immunizing haptens that mimic the whole TCS molecule were designed and 

synthesized (Figure 1). Other researchers have designed haptens that linked the TCS 

molecule to carrier proteins through the 2’-OH group.28 Our design focused on utilizing 

linkers that allowed the 2’-OH group to remain free, as it is in the parent compound, because 

the 2’-OH is one element that distinguishes TCS from other diphenyl ethers. Another study 

explored using haptens that mimic only part of the TCS molecule, but found that titers were 

low to these fragmentary haptens19. Although we and others have utilized this fragmentary 

strategy successfully for polybrominated diphenyl ethers and polychlorinated biphenyls14,29, 

for this study we focused on haptens that mimic the whole molecule for immunization.

In a competitive ELISA, reducing the apparent affinity of the antibody for the coating 

antigen relative to its affinity for TCS, usually results in more sensitive assays. Our coating 

hapten design utilized several strategies for achieving this goal. For example, haptens T7, T8 
and T9 contain linkers that are unsaturated, while immunizing haptens contained linkers that 

were saturated. All coating haptens contained substitutions at the 2’-OH position, while 

immunizing haptens retained the 2’-OH. Linkers were attached at the 2’- or 4’- positions in 

coating haptens, but were in the 4-position for immunizing haptens. Finally, haptens where 

the 2’-OH was substituted with Cl or Br were also synthesized. Such changes in linker 

composition, linker location and substitutions at key positions provide a library of coating 

antigens that can greatly improve the chances of developing a highly sensitive and selective 

immunoassay.30-32 The structural characterization of all haptens is provided in the 

Supporting Information.
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Antibody Characterization

The titer of the antisera collected after each boost was determined by the homologous 

indirect ELISA. All of the antisera showed relatively high constant titers after the fifth 

immunization and no significant affinity for BSA alone. All nine antisera were then screened 

for inhibition against all coating antigens at two concentrations (5 and 500 μg/L) of TCS. 

Antisera/coating antigen combinations that showed over 50% inhibition at 500 μg/L and 

over 20% inhibition at 5 μg/L, were re-screened at 10 concentrations of TCS ranging from 

0.003 to 5000 μg/L.

All antisera/coating antigen combinations that were homologous assays had IC50s above 750 

μg/L or, in the case of antiserum #1156 exhibited low binding as demonstrated by the low 

Amax. Among the heterologous antisera/coating antigen assays, those utilizing antisera 

against hapten T1 (#1288) or T3 (#1158) had higher IC50s, while antiserum against hapten 

T2 (#1155, #1156) had mixed results depending upon the coating antigen used (Table 1). 

The assay demonstrating the lowest IC50 used antiserum #1155 that was raised against 

immunizing hapten T2 and coating antigen T8-BSA. Similar to the results from Brun and 

colleagues,19 the best immunogen identified was one that contained a nitrogen as the first 

atom on the linking arm.

Haptens B1 and B2 that replace chlorine substituents of TCS hapten T8 by bromine atoms, 

were synthesized to develop a BDE immunoassay (Figure 1).14 These haptens were screened 

in order to introduce additional heterology in the coating antigen. A similar strategy was 

used for an earlier TCS assay28 and for an assay for deltamethrin.33 For antiserum #1288 

(raised against T1-Tg) and antiserum #1158 (raised against T3-Tg) the use of B1-BSA 

resulted in improved sensitivity compared to the best TCS-based coating antigen for each 

antibody. For antiserum #1155, both B1- and B2-BSA resulted in sensitive assays, but were 

not superior to assays utilizing TCS haptens T8 and T9. Among the combinations of B1-

BSA/antiserum #1288, B1-BSA/antiserum #1158 and B1-BSA/antiserum #1155 the latter 

was selected as one of the assays used in further assay development because it had the 

lowest overall IC50 among the assays utilizing brominated coating antigens (Table 1).

Unique coating haptens where the hydroxyl group was replaced by a Cl atom (haptens T6, 

T8 and T9) for the heterologous competition format resulted in remarkably increased assay 

sensitivity. Although the antibody (#1155) bound these coating haptens with moderate 

affinity, the affinity for free TCS was greater allowing the displacement of the antibody by 

low concentrations of TCS resulting in a sensitive assay. Conversely, the assay that used 

hapten T7 that contained a –OCH3 group in place of the –OH was not sensitive, indicating 

that the affinity of the antibody for the –OCH3 group was greater than for the –OH. In 

conclusion the coating antigen, hapten T9-BSA (where the hydroxyl group was replaced by 

a Cl atom, and a medium length rigid carbon linker was included) along with antibody 

#1155 was selected for further assay development due to its high maximum signal, high 

signal/noise ratio, steep slope and low IC50 value.
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Optimization

Utilizing immunizing haptens T1 and T2 resulted in reasonable antibody affinity to the 

target analyte in a competitive assay format and rabbit antiserum #1155 generated against 

T2 provided the lowest IC50 (Table 1). Hapten T9-BSA and antiserum #1155 was found to 

be the best combination and was used for these optimization studies. Methanol (MeOH) is 

generally used as a co-solvent in the assay buffer (PBS) to assure the solubility of lipophilic 

analytes. As seen in Table 2, since lower amounts of MeOH provided better sensitivity, 10% 

MeOH was selected for the further assay development. The IC50 was not significantly 

affected by pH values ranging from 5.5 to 8.5 in the buffer but the maximum absorbance 

signals varied. A pH 8.5 PBS assay buffer containing 10% MeOH was selected for further 

experiments because the assay had the lowest IC50 and a good ratio of maximum to 

minimum signal (A/D) of 16. Since the maximum absorbance signals are generally 

significantly reduced by higher ionic strength (2X or 4X PBS) due to the suppression of the 

binding interaction of antibody to antigen, 1X PBS (0.15 M) was used for the assay.

The final assay conditions were as follows: Primary antiserum #1155 was diluted in PBST 

(PBS containing 0.05% Tween 20). The optimized ELISA used a coating antigen of T9-

BSA at a concentration of 1 μg/mL and antiserum #1155 produced against hapten T2-Tg at a 

dilution of 1/5,000 in PBST before the competition. The plate coated with the coating 

antigen was blocked with 0.5% BSA. The assay buffer was 10% MeOH in 0.15 M PBS, pH 

8.5. Under these conditions the assay had a linear range (IC20-80) of 0.2–6.7 μg/L of the 

target and an IC50 value of 1.2 μg/L. The LOD in buffer was 0.1 μg/L, the IC10 value (Figure 

2). This assay is comparable in sensitivity to the formats reported earlier that exhibited IC50 

values for TCS of 3.85 μg/L19 and 0.25 μg/L18

Cross Reactivity

TCS metabolites and its structural analogs were evaluated for cross reactivity. The assay was 

selective for the target analyte TCS. Cross reactivities to methyl TCS (2,4,4′-trichloro-2′-

methoxydiphenyl ether) and BDE-47 (2,2’,4,4’-tetrabromodiphenyl ether) were 3 and 4% 

respectively, while the antimicrobial triclocarban and two thyroid hormones cross reacted 

<1% (Table 3). These cross-reactivity patterns are very similar to the assay described by 

Brun et al.,19 while the assay by Shelver18 cross-reacted with methyl-TCS (312%) and BDE 

congeners (2.5 – 64%). It is likely that both the phenyl and hydroxyl are important for 

binding by the antibody that was generated against immunizing hapten T2 where the –OH 

was exposed and explains the similar findings by Brun et al. where the phenyl and hydroxyl 

are also exposed.19 The antibody generated against hapten T1 where the -OH group of TCS 

was alkylated to - OCH2(CH2)2-COOH, highly recognized methyl TCS and BDE-47 and 

showed less specificity to TCS due to the lack of H-bonding donation, which is consistent 

with earlier findings using a similar immunizing hapten conjugated through the hydroxyl.18

Analysis of Fish Exposure and Biosolid Samples

Water samples, that were used to test the toxicity of TCS to fish, were diluted 5-fold at low 

concentrations and 25-fold at high concentrations prior to the immunoassay in order to bring 

the samples into the linear range of the assay. Recoveries of 85 - 92% were obtained from 

both the immunoassay and LC-MS/MS analysis. The recoveries obtained using the 

Ahn et al. Page 7

Environ Sci Technol. Author manuscript; available in PMC 2017 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



immunoassay method are comparable to other studies where fortified mineral and 

wastewater samples were analyzed without cleanup18,19 having reported recoveries ranging 

from 75-113%. Similarly recoveries above 85% were reported for an LC-MS/MS methods 

that utilized solid phase extraction.34,35 An average ratio between instrumental analysis and 

immunoassay results was less than 1.2 (Table 4).

Analysis of biosolid samples can be challenging because of the complexity of the samples, 

thus multi-step sample extraction and cleanup methods are necessary36 using techniques 

such as accelerated solvent extraction coupled to solid phase cleanup.37 Immunoassays are 

often advantageous because the antibody provides some selectivity for the analyte in the 

presence of matrix, eliminating the need for exhaustive cleanup before analysis.38 Our goal 

was to use a simple, field portable sample preparation method, thus samples were extracted 

with methanol-acetone and shaking. For instrumental analysis, the samples were extracted 

using a methanol reflux method described in Supporting Information. The LC-MS/MS 

extraction and analysis showed higher levels of TCS than the ELISA method. Because the 

sample preparation methods were not identical, it is not known whether the difference is due 

to extraction efficiency or a matrix effect on either or both detection methods. Nevertheless, 

the concentrations of TCS found in these biosolid samples were within the wide range of 

TCS concentrations found in other biosolids.39 The average ratio between the results of both 

methods was less than 1.6 (Table 5), indicating that this immunoassay is suitable for the 

determination of TCS in biosolid samples as an alarm or primary screening method.

In conclusion, to develop a sensitive and selective immunoassay for TCS, a hapten 

preserving the 2’–OH group in a near perfect molecular mimic of TCS aids in the selective 

recognition of the TCS by the resulting antibody. A unique feature of this immunoassay is 

the use of a novel heterologous coating hapten where the -OH was substituted with a -Cl. 

This resulted in a decreased affinity of the antibody for the coating antigen and subsequently 

increased the ability of the analyte to compete resulting in the highest sensitivity assay. This 

immunoassay was more sensitive (IC50 value of 1.2 μg/L) compared to the TCS assay 

developed by Brun et al. (3.85 μg/L),19 but less sensitive than the existing Abraxis assay kit 

for TCS (0.25 μg/L, http://www.abraxiskits.com). Moreover, this immunoassay utilizes less 

primary antibody than the previously described assays.18,19 Furthermore, the results from 

this assay were in agreement with the LC-MS/MS method for testing environmental samples 

with fewer, simpler extractions steps needed and is the first report of the analysis of TCS in 

biosolids by immunoassay.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

AhR aryl hydrocarbon receptor

BDE polybrominated diphenyl ether

BSA bovine serum albumin

ECD electron capture detector

ELISA enzyme linked immunosorbent assay

GAR-HRP goat anti-rabbit IgG peroxidase conjugate

GC gas liquid chromatography

HPLC high-performance liquid chromatography

LC-MS/MS liquid chromatography tandem mass spectrometry

LOD limit of detection

MeOH methanol

MS mass spectrometry

NHS N-hydroxysuccinimide

PBS phosphate buffered saline

PBST phosphate buffered saline containing 0.05% Tween 20

SPE solid phase extraction

TCS triclosan

Tg thyroglobulin

TMB 3,3’5,5’-tetramethylbenzidine
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Figure 1. 
Structures of immunizing and coating haptens. Arrows on the TCS structure indicate sites 

where the functional group was introduced. Haptens B1 and B2 were previously used for the 

development of a BDE-47 immunoassay.14
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Figure 2. 
Optimized conditions and standard curve for TCS immunoassay
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Table 1

Characteristics of the ELISA using various combinations of antiserum and coating antigen

Format Immunogen Anti-serum # Coating antigen A/D

Amax
a Slope IC50 (μg/L) Amin

Homologous T1-Thy 1288 T1-BSA 1.03 1.00 788 0.17 6

Heterologous T1-Thy 1288
B1-BSA

b 0.78 0.94 49.1 0.06 14

Heterologous T3-Thy 1158 T2-BSA 1.11 1.45 1240 0.31 4

Heterologous T3-Thy 1158
B1-BSA

b 1.26 1.58 488 0.04 33

Heterologous T3-Thy 1158
B2-BSA

b 1.11 1.45 1240 0.31

Homologous T2-Thy 1155 T2-BSA 0.26 0.40 1950 −0.02 16

Heterologous T2-Thy 1155 T3-BSA 0.75 0.24 1590 −0.24 3

Heterologous T2-Thy 1155
B1-BSA

b 0.72 0.71 15.4 0.23 3

Heterologous T2-Thy 1155
B2-BSA

b 0.92 0.68 20.7 0.28 3

Heterologous T2-Thy 1155 T6-BSA 0.34 0.69 3.8 0.05 6

Heterologous T2-Thy 1155 T8-BSA 0.86 0.60 1.5 0.07 13

Heterologous T2-Thy 1155 T7-BSA 0.69 0.21 8010 −0.01 62

Heterologous T2-Thy 1155 T9-BSA 0.89 0.86 2.0 0.07 12

Homologous T2-Thy 1156 T2-BSA 0.16 0.98 8 0.05 3

Heterologous T2-Thy 1156 T3-BSA 0.36 1.06 24 0.06 6

Heterologous T2-Thy 1156
B1-BSA

b 0.12 0.54 327 0.02 6

a
Parameters calculated from a 4-parameter logistic fit of a calibration curve.

b
From Ahn et al.14
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Table 2

Effect of pH or solvent on the assay sensitivity

Parameters derived from the 4-parameter curve fit
a

Amax Slope IC50 (μg/L) Amin A/D

Solvent effect

10% MeOH 0.896 1.07 63.0 0.132 7

20% MeOH 0.985 0.89 67.5 0.130 8

40% MeOH 0.997 0.94 120 0.135 7

pH Effect

pH 5.5 1.10 1.12 2.1 0.088 13

pH 7.4 1.11 1.02 1.6 0.103 11

pH 8.5 0.940 0.81 1.2 0.059 16

pH 10.7 0.789 0.83 1.6 0.076 10

a
Amax is the absorbance observed in the absence of analyte, IC50 is the calculated valued described as the concentration resulting in a 50% 

decrease in maximum signal, Amin is the absorbance observed at maximum inhibition of signal. Hapten B1-BSA and antiserum #1288 were used 

for the analysis of methanol effect.
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Table 3

Cross-reactivity (%) of compounds structurally related to TCS

Compound Combination of Cag Hapten T9/antiserum #1155 Combination of Cag Bl-BSA/antiserum #1288

100 100

3 107

4 140

NI
a Not tested

0.05 Not tested

0.04 Not tested

a
NI = no inhibition at 5000 μg/L.
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Table 4

TCS concentrations in water samples by ELISA and LC-MS/MS

TCS added (μg/L)
TCS measured (μg/L)

Ratio (LC-MS/MS/Immunoassay)
Immunoassay LC-MS/MS

0 0.38 ± 0.14 0.54 ± 0.08 1.42

3 2.36 ± 0.70 3.05 ± 0.91 1.29

30 26.9 ± 3.2 25.6 ± 1.07 0.95

100 73.6 ± 13.0 84.0 ± 1.31 1.14

300 298 ± 20.4 287.6 ± 6.45 0.96

Average Recovery (%) 85.3 ± 11.6 91.7 ± 8.47 1.15 ± 0.20

Samples containing spiked concentrations of 0 - 3 μg/L were diluted 5 times in the assay buffer prior to analysis; Samples containing 100 - 300 
μg/L were diluted 25 times in the assay buffer.
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Table 5

TCS concentrations in biosolid samples by ELISA and LC-MS/MS

Sample
TCS concentration determined in biosolids (ng/g dry weight)

Ratio (LC-MS/MS/Immunoassay)
Immunoassay LC-MS/MS

DLD 2 966 ± 68 1720 ± 247 1.78

DLD 3 392 ± 39 521 ± 102 1.33

DLD 4 489 ± 20 826 ± 223 1.69

Average 1.60 ± 0.24

Immunoassay data is the mean of triplicate extractions. LC-MS/MS data is the mean of two replicates.
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